生物傳感器是一門由生物、化學、材料、電子技術和物理等多學科相互交叉形成的研究方向,其中基于新型納米材料構建的電化學生物傳感器由于其制備方法簡單、靈敏度高、響應速度快和成本低等優點被廣泛應用于食品、制藥、環境監測、生物醫學等方面。本文制備了幾種新型納米材料,并構建電化學生物傳感器。具體內容包括以下三個方面:
(1) 采用電化學法還原氧化石墨烯,構建石墨烯修飾玻碳電極(GCE),選用方波伏安法(SWV)測定微量鎘。實驗研究了石墨烯修飾電極對鎘的溶出伏安行為,優化了石墨烯用量、富集電位、富集時間、pH 值、支持電解質。結果表明石墨烯修飾電極明顯增強了鎘溶出信號,響應電流值與 Cd2+的濃度呈良好的線性關系,線性范圍為0.001-1μg/mL,線性方程 y=27.8592x+0.3445 (R=0.998),檢出限為 0.001 μg/mL,所制備的修飾電極重現性和重復性較好,6 次測定的相對標準偏差(RSD)分別為2.56%和2.51%.所提出的檢測方法,簡單、靈敏、快速,無需復雜的樣品前處理,修飾電極可重復使用,能應用于實際水樣中鎘的快速測定。
(2) 采用葡萄糖作為還原劑,聚乙烯吡咯烷酮(PVP)為穩定劑制備一種新型綠色金納米顆粒(AuNP),然后將金納米顆粒修飾玻碳電極(AuNP/GCE),利用計時電流法對過氧化氫(H2O2)進行檢測。實驗優化了金納米顆粒的用量、工作電位、磷酸緩沖溶液(PBS)的 pH 值。實驗表明,所制備的 AuNP/GCE 對 H2O2有良好的電催化性能。線性范圍為0.005-3.5 mM,最低檢出限為 2.0 μM.此傳感器制備方法簡單,靈敏度高,檢測線低,選擇性好。
(3) 采用電化學還原氧化石墨烯法制備石墨烯,以 Cu2O 納米顆粒為犧牲模板合成硫化銅空心球(CuSHNs),應用石墨烯/硫化銅空心球修飾玻碳電極,計時電流法測定過氧化氫(H2O2)。實驗優化了石墨烯用量、還原時間、硫化銅空心球用量、磷酸緩沖溶液pH 值、工作電位。在優化條件下,響應電流值與 H2O2濃度在0.005-4.0 mM 范圍內呈現良好的線性關系,線性方程為 y=7.1245x+0.3659 (R=0.9989),檢測下限為 3.0 μM,3 次重復測定 RSD 為 2.46%.石墨烯與硫化銅空心球有良好的協同作用,顯著提高了傳感器對 H2O2響應電信號,所提出的檢測方法具有簡單、靈敏、快速等優點。
關鍵詞:石墨烯;金納米顆粒;硫化銅空心球;電化學傳感器
Abstract
Biosensor is a multidisciplinary research filed involved biology, chemistry, materials,electronics and physics. Electrochemical biosensor based on functional nanomaterials hasmany advantages, such as simple fabrication, high sensitivity, fast response and low cost,which has broad application in many fields including food, pharmaceutical, environmentalmonitoring and biomedicine. The main contents of this paper focus on the preparation ofnovel functional nanomaterials, and its application in electrochemical biosensor. The specificworks are included as follows:
(1) An electrochemical sensor of Cd2+was constructed by electrochemical reduction ofgraphene oxide on the glassy carbon electrode (GCE)。 The determination of Cd2+wasproceeded by square wave voltammetry. The Stripping voltammetric behavior of Cd at thegraphene modified electrode was studied. The amount of graphene, deposition potential,deposition time, pH and the supporting electrolyte were optimized. In comparison with thebare glassy carbon electrode, the response signal of the graphene modified GCE wasobviously increased. Under the optimal conditions, the linear calibration curve ranges from0.001 to 1 μg/mL. The linear equation was y= 27.8592x+0.3445 (R=0.998)。 The detectionlimit was 0.001 μg/mL. The reproducibility and repeatability were also investigated with RSDof 2.56% (n=6) and 2.51% (n=6), respectively. Owing to its simple fabrication, highsensitivity, fast response, good stability and repeatability, the developed sensor can serve aspromising electrochemical platform for the detection of Cd2+in real samples.
(2) We developed a novel strategy to synthesize gold nanoparticles (AuNP) by a greensynthetic method. The AuNP were synthesized by using glucose as the reducing agent andpolyvinylpyrrolidone as the stabilizing agent. AuNP is modified on the surface of glassycarbon electrode, and the modified electrode was applied to hydrogen peroxide (H2O2)detection by chronoamperometry. We optimized the amount of AuNP, the applied potentialand the pH of phosphate buffer solution for H2O2detection. AuNP exhibits excellentelectrocatalytic activity for H2O2reduction, such as an excellent sensing performance with awide linear range from 0.005 to 3.5 mM H2O2, and a low detection limit to 2.0 μM. Thedeveloped electrochemical biosensor based on AuNP possesses advantages such as simplefabrication, fast response, exellent selectivity and relatively low detection limit.
(3) Electrochemical reduction of graphene oxide was applied to prepare graphene.Copper sulfide hollow spheres were obtained using Cu2O nanoparticles as sacrificialtemplates. We fabricated an electrochemical biosensor for hydrogen peroxide (H2O2)detection with nanocomposites of the reduced graphene oxide and CuS hollow spheres bychronoamperometry. The amount of graphene, the reduction time of graphene oxide, theamount of CuS hollow spheres, the pH of phosphate buffer solution and the applied potentialwere optimized. Under the optimized experimental conditions, the response current versus theconcentration of H2O2is in a linear range of 0.005 to 4.0 mM and the detection limit is 3.0μM (S/N=3)。 The linear equation is y=7.1245x+0.3659 (R=0.9989)。 The reproducibility wasinvestigated with a RSD of 2.46% (n=3)。 The reduced graphene oxide and CuS hollowspheres have good synergistic effects, which can significantly enhance the amperometricresponse of the sensor toward H2O2. The developed H2O2sensor based on reduced grapheneoxide and CuS hollow spheres possesses advantages such as simple fabrication, fast response,good selectivity, wide linear range and low detection limit.
Keywords: reduced graphene oxide; gold nanoparticles; copper sulfide hollow spheres;electrochemical biosensor
目 錄
第 1 章 緒論
1.1 電化學傳感器
1.1.1 概述
1.1.2 電化學生物傳感器
1.1.3 電化學無酶傳感器
1.2 納米材料在電化學傳感器中的應用
1.2.1 納米技術
1.2.2 納米材料
1.2.3 碳納米材料在電化學傳感器方面的應用
1.2.4 金屬納米材料在電化學傳感器方面的應用
1.2.5 半導體量子點在電化學傳感器方面的應用
1.2.6 導電高分子在電化學傳感器方面的應用
1.3 本論文的研究內容及研究意義
第 2 章 基于石墨烯的鎘離子電化學傳感器
2.1 引言
2.2 實驗部分
2.2.1 儀器與試劑
2.2.2 氧化石墨烯的制備
2.2.3 傳感器的制備
2.2.4 電化學測量
2.3 結果與討論
2.3.1 石墨烯修飾電極形貌表征
2.3.2 石墨烯修飾電極的電化學特性
2.3.3 實驗條件優化
2.3.4 傳感器的分析性能
2.4 小結
第 3 章 綠色合成方法制備金納米顆粒及應用于過氧化氫檢測
3.1 引言
3.2 實驗部分
3.2.1 儀器與試劑
3.2.2 綠色合成方法制備金納米顆粒
3.2.3 傳感器的制備
3.3 結果與討論
3.3.1 金納米顆粒的表征
3.3.2 AuNP 修飾電極的電化學特性
3.3.3 實驗條件優化
3.3.4 傳感器的分析性能
3.3.5 干擾實驗
3.4 小結
第 4 章 基于石墨烯/硫化銅空心球過氧化氫電化學傳感器
4.1 引言
4.2 實驗部分
4.2.1 儀器和試劑
4.2.2 實驗方法
4.3 結果與討論
4.3.1 石墨烯、氧化亞銅模板和硫化銅空心球的形態表征
4.3.2 傳感器的電化學性能
4.3.3 傳感器的分析性能
4.4 小結
結論
參考文獻
致謝