關鍵詞:墨子號;量子衛星;量子糾纏;量子密鑰;物理學。
0 引言。
物理學是研究物質運動最一般規律和物質基本結構的一種自然科學,研究對象大至宇宙,小到基本粒子的質量、運動形式和規律等內容。量子衛星可謂是物理學中極大的天體物理和極小的量子力學理論的綜合應用,意義重大。下面我想從 2016 年 8 月 16 日我國發射的全球首科量子科學實驗衛星“墨子號”來談談對物理學中量子物理發展的一些思考。
1 “墨子號 ”的由來。
作為全球三大古老邏輯體系之一的墨家邏輯中的經典著作《墨經》中提出的“光學八條”中描述了墨子對光線的認識,并成功設計了樸素的小孔成像實驗,奠定了中國光學研究的基礎,所以我國發射的全球首顆量子科學實驗衛星被命名為“墨子號”以紀念墨子先生。
2 為何發展量子通信技術和通訊優勢。
我們知道,20 世紀初,量子力學的基礎知識剛剛被奠定的時候,它帶給人們一種啟示,雖然它會時常使人感到困惑,因為量子力學在微觀世界里已經打敗了經典力學古老的確定論,反復的討論可能性、可能結果的疊加。
我們假設一個物理量存在最小的不可分割的基本單位,則這個物理量是量子化的,并把最小單位稱為量子,所以我們常用量子去指一個不可分割的基本個體,例如“光的量子”是光的基本單位光子。當然,所有可量子化的物理量其最小單位是特定的,而不是任意值。20 世紀的前一半時期許多物理學家將量子力學視為了解和描述自然的基本理論,發展出了量子光學、量子計算等不同專業領域來研究。
量子計算領域利用量子效應來控制和處理信息,它具有驚人的潛力,因為經典數據的二進制“比特”一次只能取一個值,而量子的“量子比特”能夠在給定范圍內代表任意及所有可能的取值:在被測量以前,它以所有的可能太的“疊加”形式存在。量子計算特別適合用于解決今天只能依靠“強力”處理器能力來解決的特殊問題-比如,幾十個量子比特陣列就能夠存儲超過太字節(萬億)的傳統數據量。[3]
因此發展量子通信技術的優勢非常明顯,前景廣闊。
3 “墨子號 ”工作的理論基礎。
1917 年 G.Vernam 提出了 “ 一次一密 ”(One -Time Pad)密碼體制[1] [2],C.E.Shannon 于 1949 年用信息論證明了該密碼體制是無條件安全的[1] [2],這是目前唯一被證明是絕對安全的密碼體制。
由于量子信號的攜帶者光子在外層空間傳播時幾乎沒有損耗,如果能夠在技術上實現糾纏光子再穿透整個大氣層后仍然存活并保持其糾纏特性,人們就可以在衛星的幫助下實現全球化的量子通信。此次發射的量子科學實驗衛星完全由我國自主研發,突破了衛星平臺、有效載荷、地面光學收發站等一系列關鍵技術,將在軌開展量子密鑰分發、廣域量子密鑰網絡、量子糾纏分發、量子隱形傳態、星地告訴相干激光通信等科學實驗。
潘建偉研究小組在 2003 年開始研究自由空間量子通信,他們在實驗點制備出成對的糾纏光子,再利用兩個專門設計加工的發射望遠鏡將容易發散的細小光束“增肥”后向東西相距 13 公里的兩個實驗站送出, 兩個接收端用同樣型號的望遠鏡收集。
量子衛星和地球通信是雙向的。衛星和地面站都擁有發射端和接收端。發射端包含單光子光源和光束整形系統,接收端包含單光子探測器和成像系統。光束整形系統和成像系統把點光源變成平行光并將其匯聚到焦點上。發射端和接收端是靠激光聯系,它們之間有個大氣層---它是目前較大的麻煩。
經過研究人員的種種努力,在如此遠距離的傳送中,雖有許多糾纏光子衰減,但仍有相當比例的“夫妻對”能存活下來并有旺盛的生命力,經單光子探測器檢測,分居東西兩地的光子“夫妻對”即使相距遙遠仍能保持相互糾纏狀態,攜帶信息的數量和質量能完全滿足基于衛星的全球化量子通信要求。
在此基礎上,研究小組進一步利用分發的糾纏光源進行絕對安全的量子保密通信。13 公里不僅是目前國際上自由空間糾纏光子分發的最遠距離,也是目前國際上沒有竊聽漏洞量子密鑰分發的最大距離。
4 我國量子通訊發展歷史和量子衛星的前景展望。